There’s no drug yet, but I have high hopes that in the near future, we’ll have something in clinical trials. That would be amazing.
LA JOLLA, Calif. (PRWEB)
February 03, 2023
For the first time, researchers from Sanford Burnham Prebys have discovered that prostate cancer can be killed by targeting a single enzyme, called PI5P4Kα. The findings, published recently in Science Advances, could help address the growing threat of treatment resistance in prostate cancer and could also lead to improved treatments for other cancers, such as those affecting the breast, skin, and pancreas.
“This is the first time this enzyme has been implicated in prostate cancer, and we expect that it will prove relevant to other cancers as well,” says co-senior author Brooke Emerling, Ph.D., an associate professor at Sanford Burnham Prebys. “An important element of improving precision medicine is using as many tools as possible to treat cancer while mitigating the risk of resistance.”
Many cases of prostate cancer can be treated through treatments that lower testosterone and other male sex hormones, but about 10–20% of prostate cancer cases resist treatment within five years. This treatment-resistant prostate cancer can then spread to the rest of the body, where it becomes deadly.
“Understanding how prostate cancer develops resistance is critical for discovering new therapeutic strategies to delay or reverse the progression of prostate cancer,” says Emerling.
PI5P4Kα is part of a group of enzymes called PI5P4Ks that are involved in the metabolism of lipids, a type of molecule that includes fats, hormones, and many vitamins. While other areas of cancer metabolism have been extensively researched for decades, lipid metabolism has only recently emerged as a promising therapeutic avenue for cancer.
“Treatments that target lipid metabolism could be an unexplored treasure trove, and it’s something researchers are very interested in right now,” says Emerling. “We’re working to develop drugs to target this enzyme, and there are several companies out there developing their own drugs as well.”
Because of this interest, Emerling and her colleagues are optimistic about the future of this treatment approach.
She says, “There’s no drug yet, but I have high hopes that in the near future, we’ll have something in clinical trials. That would be amazing.”
Share article on social media or email: